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2. Overall Objectives
2.1. Introduction

The aim of the project MODBIO is to develop computational models for molecular and cell biology. We are
focusing on two types of problems:

• Determining the structure of biological macromolecules,

• Discovering and understanding the function of biological systems.

We approach these questions by combining techniques from constraint programming, combinatorial opti-
mization, hybrid systems, and statistical learning theory.

2.2. Research themes

• Sequence and structural alignment, phylogeny.

• Determination and analysis of macromolecular envelopes.

• Protein structure prediction and protein docking.

• Modeling alternative splicing regulation.

• Metabolic pathway analysis.
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2.3. Scientific and industrial relations

• Participation in the "Génopole Strasbourg Alsace-Lorraine"

• Participation in the Bioinformatics project of the Région Lorraine

• Participation in the ACI project GENOTO3D

• Participation in the ARC INRIA "Process calculi and molecular networks"

• Participation in the "Décrypthon" programme

• Various national and international collaborations

– Laboratoire «Maturation des ARN et Enzymologie Moléculaire» (MAEM), UMR 7567,
Nancy

– Laboratoire de Cristallographie, LCM3B, Nancy

– Institut de Biologie et Chimie des Protéines, IBCP, Lyon

– Institut Supérieur d’Agriculture, ISA, Beauvais, France

– Center for Bioinformatics, Saarbrücken, Germany

– DFG Research Center Matheon, Berlin, Germany

– Institute of Mathematical Problems in Biology, Russian Academy of Sciences

– University of California, Irvine, USA

3. Scientific Foundations
3.1. Constraint programming

Constraint programming [40] is a declarative programming language paradigm that appeared in the late
80’s, and which has become more and more popular since then. A constraint is a logical formula that defines a
relation to be satisfied by the values of the variables the formula contains. For instance, the formula x + y ≤ 1
expresses that the sum of the values of the variables x and y must be less than or equal to 1.

In constraint programming, the user programs with constraints, i.e., he or she describes a problem by
a set of constraints, which are connected by combinators such as conjunction, disjunction, or temporal
operators (always). Each constraint gives some partial information about the state of the system to be studied.
Constraint programming systems allow one to deduce new constraints from the given ones and to compute
solutions, i.e., values for the variables that satisfy all constraints simultaneously.

One of the main goals of constraint programming is to develop programming languages that allow one to
express constraint problems in a natural way, and to solve them efficiently.

3.1.1. Finite domain constraint programming
In our work, we are first interested in constraint problems over finite domains. In this case, the domain

of each variable (the set of values it may take) is a finite set of integer numbers. Theory tells us that most
constraint problems over finite domains are NP-hard, which means that there is little hope to solve them by
algorithms polynomial in the size of the input. In practice, these problems are handled by tree search methods
which try successively different valuations of the variables until a solution is found. Because of the exponential
number of possible combinations, it is crucial to reduce the search space as much as possible, i.e., to eliminate
a priori as many valuations as possible.

There exist two generic methods to solve such problems. The first one is classical integer linear program-
ming (see also Sect. 3.3), which has been studied in mathematical programming and operations research for
more than 40 years. Here, constraints are linear equations and inequalities over the integer numbers. In order



Project-Team MODBIO 3

to reduce the search space, one typically uses the linear relaxation of the constraint set. Equations and inequal-
ities are first solved over the real numbers, which is much easier; then the information obtained is used to
prune the search tree.

The second method is finite domain constraint programming which arose in the last 15 years by com-
bining ideas from declarative programming languages and constraint satisfaction techniques in artificial in-
telligence. In contrast to integer linear optimization one uses, in addition to simple arithmetic constraints,
more complex constraints, which are called symbolic constraints. For instance, the symbolic constraint
alldifferent(x1, ..., xn) expresses that the values of the variables x1, ..., xn must be pairwise distinct.
Such a constraint is difficult to express in a compact way using only linear equations and inequalities. Symbolic
constraints are handled individually by specific filtering algorithms that reduce the domain of the variables.
This information is propagated to other constraints which may further reduce the domains.

A state-of-the-art survey of finite domain constraint programming, with special emphasis on its relation to
integer linear programming can be found in [5].

3.1.2. Concurrent constraint programming
In concurrent constraint programming (cc) [37], different computation processes may run concurrently.

Interaction is possible via the constraint store. The store contains all the constraints currently known about the
system. A process may tell the store a new constraint, or ask the store whether some constraint is entailed by
the information currently available, in which case further action is taken.

Hybrid concurrent constraint programming (Hybrid cc) [36] is an extension of concurrent constraint
programming which allows one to model and to simulate the temporal evolution of hybrid systems, i.e., systems
that exhibit both discrete and continuous state changes. Constraints in Hybrid cc may be both algebraic
and differential equations. State changes can be specified using the combinators of concurrent constraint
programming and default logic. Hybrid cc is well-suited to model dynamic biological systems, as shown
in [4].

3.2. Statistical learning
Statistical learning theory [39] is one of the fields of inferential statistics the bases of which have been

established by V.N. Vapnik in the late 1960s. The goal of this theory is to specify the conditions under which
it is possible to «learn» from empirical data obtained by random sampling. Learning amounts to solving a
problem of function or model selection. Basically, given a task characterized by a joint probability distribution
on pairs made up of observations and labels, and a class of functions, of cardinality ordinarily infinite, the goal
is to find in the class a function with optimal performance. Training can thus be reformulated as an optimization
problem. In many cases, the objective function is related to the capacity of the class of functions [19].
The learning tasks considered belong to one of the three following areas: pattern recognition (discriminant
analysis), function approximation (regression) and density estimation.

This theory considers more specifically two inductive principles. The first one, named empirical risk
minimization (ERM) principle, consists in minimizing the training error. If the sample is small, one substitutes
to this the structural risk minimization (SRM) principle. It consists in minimizing an upper bound on the
expected risk (generalization error), a bound sometimes called a guaranteed risk. This latter principle is
implemented in the training algorithms of the support vector machines (SVMs), which currently constitute
the state-of-the-art for numerous problems of pattern recognition.

SVMs are connectionist models conceived to compute indicator functions, to perform regression or to
estimate densities. They have been introduced during the last decade by Vapnik and co-workers [35], as
nonlinear extensions of the maximal margin hyperplane [38]. Their main advantage is that they can avoid
overfitting in the case where the size of the sample is small [39], [32].

3.3. Combinatorial optimization and integer programming
“Combinatorial optimization is a lively field of applied mathematics, combining techniques from com-

binatorics, linear programming, and the theory of algorithms, to solve optimization problems over discrete
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structures” [34]. A combinatorial optimization problem can be defined as follows: we are given a ground set
N and consider a finite collection of subsets, say {S1, S2, · · · , Sm}. For each subset Sk there is an objective
function value, f(Sk), typically a linear function over the elements in Sk. The task is to find the subset Sk

that minimizes f(Sk). Typically, the feasible subsets are represented by inclusion or exclusion of members
such that they satisfy certain conditions. Well known examples of combinatorial optimization problems are as-
signment, covering, cutting stock, knapsack, matching, packing, partitioning, routing, sequencing, scheduling
(jobs), shortest path, spanning tree, and traveling salesman problems.

This then becomes a special class of integer programs (IP) whose decision variables are binary valued:
xi = 1 if the i-th element is in the optimal solution; otherwise, xi = 0. In this case, feasible subsets have
to be expressed by linear constraints. IP formulations are not always easy, and often there is more than one
formulation, some better than others. Many good formulations have exponential size.

4. Application Domains
4.1. Molecular biology

Participants: Ernst Althaus, Delphine Autard, Alexander Bockmayr, Stefan Canzar, Arnaud Courtois,
Yannick Darcy, Eric Domenjoud, Yann Guermeur, Abdelhalim Larhlimi, Emmanuel Monfrini, Sandrine
Schermack-Peyrefitte, Frédéric Sur.

Molecular biology is concerned with the study of three types of biological macromolecules: DNA, RNA,
and proteins. Each of these molecules can initially be viewed as a string on a finite alphabet: DNA and RNA
are nucleic acids made up of nucleotides A,C,G,T and A,C,G,U, respectively. Proteins are sequences of amino
acids, which may be represented by an alphabet of 20 letters.

Molecular biology studies the information flow from DNA to RNA, and from RNA to proteins. In a first
step, called transcription, a DNA string (“gene”) is transcribed into messenger RNA (mRNA). In the second
step, called translation, the mRNA is translated into a protein, where each triplet of nucleotides encodes one
amino acid (“genetic code”). During transcription, an intermediate maturation step can occur, which happens
mainly in eukaryotic cells. In the so-called splicing process, introns are removed from the premessenger RNA.
The remaining exons are concatenated yielding the mature RNA molecule.

Biological macromolecules are not just sequences of nucleotides or amino acids. Actually, they are complex
three-dimensional objects. DNA shows the famous double-helix structure. RNA and proteins fold into complex
three-dimensional structures, which depend on the underlying sequence. RNA is a single-stranded chain of
nucleotides. However, a nucleotide in one part of the molecule can base-pair with a nucleotide in another part,
following the Watson-Crick complementarity rules. This results in a folding of the molecule. The secondary
structure of RNA indicates the set of base pairings in the three dimensional structure of the molecule. This
information can be represented by a graph.

Proteins have several levels of structure. Above the primary sequence is the secondary structure, which
involves three basic types: α-helices, β-sheets, and structure elements that are neither helices nor sheets, called
loops. A domain of a protein is a combination of secondary structure elements with some specific function. It
contains an active site where an interaction with an external molecule may happen. A protein may have one or
several domains.

The ultimate goal of molecular biology is to understand the function of biological macromolecules in the
life of the cell. Function results from the interaction between different macromolecules, and depends on their
structure. The overall challenge is to make the leap from sequence, through structure, to understand about the
function.

4.2. Crystallography
Participants: Alexander Bockmayr, Eric Domenjoud.
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X-ray structure analysis is the main tool to establish the three-dimensional atomic structure of biological
macromolecules and their complexes. The determination of a structure in X-ray crystallography passes through
several stages:

• purification and crystallization of the object under study (a protein, DNA, RNA, virus, or a huge
macromolecular complex, such as ribosome or lipoprotein particles);

• X-ray experiment (usually at synchrotron accelerators); data collection (up to a million of indepen-
dent observations) and their primary processing;

• the solution of the inverse problem of the theory of diffraction to find the electron density distribution
in the studied object and to interpret it in terms of atoms.

A key problem of X-ray structure analysis is the so-called phase problem. In an X-ray experiment, one can
measure only the magnitudes of the complex Fourier coefficients of the electron density distribution under
study, but not their phases. Half of the necessary information is therefore lost, and must be restored by other
means.

4.3. Operations research
Participants: Ernst Althaus, Alexander Bockmayr, Eric Domenjoud.

While molecular biology has become the main application area of our work, we continue to study selected
problems from other domains, in particular operations research. During this year, we have been working on
graph and network design problems, and also on problems from computational geometry and linguistics. The
corresponding results are presented in Sect. 6.10.

5. Software
5.1. M-SVM: Multi-class Support Vector Machine

Participant: Yann Guermeur [correspondent].

We have extended the functionalities and optimized the code of the application devoted to the standard M-
SVM (M-SVM1 in [9]). The corresponding pieces of software have been registred at the APP under the IDDN
number IDDN.FR.001.170014.000.R.P.2005.000.10000.

6. New Results
6.1. Structural risk minimization inductive principle for multi-class

discriminant analysis
Keywords: Statistical learning theory, model selection, support vector machine.

Participants: Yannick Darcy, Yann Guermeur, Frédéric Sur.

We have continued our study of the generalization error of large margin multi-class discriminant models,
laying emphasis on the use of bounds for model selection. A first algorithm of model selection, dedicated to
M-SVMs, was based on a bound on the entropy numbers of the evaluation operator [27]. The computation
of tighter bounds on those entropy numbers is still a work in progress. It takes the form of the derivation
of a generalized formulation of the Maurey-Carl theorem [33]. Those bounds will then be compared with
those involving extended Sauer’s lemmas and generalized VC dimensions [18]. In parallel, the work on
the computation of estimates of the risk based on the leave-one-out procedure has given birth to a first
theorem [31], extending Chapelle’s "radius-margin bound". All the aforementioned bounds are progressively
incorporated in our M-SVM software, where they can be used to select the soft margin parameter C.
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6.2. Probabilistic automata inference
Keywords: Statistical learning theory, grammatical inference, probabilistic automata, rational languages.

Participant: François Denis.

In Probabilistic Grammatical Inference, it is supposed that learning data consist in a sequence of words
over a finite alphabet Σ drawn according to a fixed but unknown probability distribution P called a stochastic
language. Then, the goal is to find a model, which can be a probabilistic automata (PA) or a Hidden Markov
Model (HMM) for instance, consistent with the data. Hidden Markov Models and Probabilistic Automata have
the same expressivity and their relationship have been precisely studied in [17]. With Yann Esposito, from
the "Laboratoire d’informatique fondamentale de Marseille" (LIF), we have proved in [25] that stochastic
languages p generated by probabilistic automata A depend continuously on the parameters of A, for the
|| · ||∞ norm. As a corollary, we prove that probabilistic automata can be identified in the limit and that the
identification is exact when the parameters of the target are rational numbers. However, this result is theoretical
and does not lead to a practical learning algorithm. The main difficulty is to infer an appropriate structure from
the data: this is possible when natural components of the model correspond to intrinsic components of the
target language. We defined the notions of residual languages of a stochastic language and Probabilistic
Residual Automata. A PRA is a PA whose states directly correspond to the residual of the language it
generates. When the target stochastic language can be generated by a PRA, an efficient learning algorithm
can be defined (see [25]). Stochastic languages defined from probabilistic automata are rational languages and
we feel necessary to study Rational Stochastic Languages from a Language Theoretical point of view. Main
results have been described in [26]. A main publication is in preparation.

6.3. Semi-supervised learning; application to the disulfide bridges prediction
Keywords: Statistical learning theory, bio-informatics, semi-supervised learning.

Participant: François Denis.

Semi-supervised learning algorithms aimed to exploit simultaneously labeled and unlabeled data for
classification. We have been working for several years on a specific semi-supervised learning problem: binary
classification from positive and unlabeled data. Theoretical results, strengthened by experimental results, have
proved that many learning algorithm can be adapted to this context (see [16]). With Christophe Magnan, who is
doing a PhD on this subject at the LIF, we are currently studying applications of this paradigm to a biological
problem: disulfide bridges prediction [28]. We are also working, with Liva Ralaivola (MdC, Université de
Provence), on a more sophisticated model in order to deal with contact maps in proteins.

6.4. Boosting blast
Keywords: Statistical learning theory, bio-informatics, boosting.

Participant: François Denis.

The function of a single protein is mainly carried out by a domain which is a subsequence of amino-acids
within the whole sequence of the protein. During evolution, the sequence of such a domain can be significantly
modified while the function is still conserved. Our work deals with functional families whose domains are not
well conserved during evolution. Let F be a functional family, let P = {p1, ..., pn} a set of annotated proteins
which are known to belong or not to F , our problem is to decide whether any new protein p belongs to F .

In many cases, comparing a new sequence of protein p with some sequences of the family F is enough for
predicting whether p ∈ F . Such a similarity search may be achieved by using either an alignment program
such as BLAST or any model of the family’s sequences, for example stochastic and probabilistic models such
as Hidden Markov Models. Unfortunately, none of these methods is satisfactory whenever the sequences of the
domains of the family are not conserved. Our proposal is to use a boosting algorithm associated with BLAST
to deal with this problem. First results have published in [24], [23]. Cécile Capponi, at the LIF, is leader on
this thema.
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6.5. Shape recognition in digital images
Keywords: Shape recognition, a contrario models, cluster analysis.

Participant: Frédéric Sur.

Shape recognition is the field of computer vision which addresses the problem of finding out whether a
query shape lies or not in a shape database, up to a certain invariance. Most shape recognition methods simply
sort shapes from the database along some (dis-)similarity measure to the query shape. Their Achilles’ heel is
the decision stage, which should aim at giving a clear-cut answer to the question: “do these two shapes look
alike?” In [13], [21], the proposed solution consists in bounding the number of false correspondences of the
query shape among the database shapes, ensuring that the obtained matches are not likely to occur “by chance”.
As an application, one can decide with a parameterless method whether any two digital images share some
shapes or not. In a paper submitted to VISAPP’06, we propose to apply the above a contrario methodology to
shapes which are described by size functions, in order to design a perceptual matching algorithm.

A further step consists in grouping matching shapes that share the same respective positions in two
corresponding images. In [30], we intend to form spatially coherent groups of shapes. Each pair of matching
shape elements indeed leads to a unique transformation (similarity or affine map.) A unified a contrario
detection method is proposed to solve three classical problems in clustering analysis. The first one is to
evaluate the validity of a cluster candidate. The second problem is that meaningful clusters can contain or
be contained in other meaningful clusters. A rule is needed to define locally optimal clusters by inclusion. The
third problem is the definition of a correct merging rule between meaningful clusters, permitting to decide
whether they should stay separate or unit. As an application, the present theory on the choice of the right
clusters is used to group shapes by detecting clusters in the transformation space.

6.6. Protein structure prediction
Keywords: Statistical learning, disulphide bridges, kernel engineering, protein secondary and tertiary struc-
ture.

Participants: Yannick Darcy, Yann Guermeur, Frédéric Sur.

Knowing the three-dimensional structure of a protein can greatly help to infer its function. Predicting this
tertiary structure from the sequence of amino acids (or primary structure), remains one of the central open
problems in structural biology. This is the subject of the «GENOTO3D» project that we coordinate. This year,
our main efforts have been concentrated on the development of a new kernel for our M-SVM dedicated to
protein secondary structure prediction, a kernel based on a pair-HMM.

Our collaboration with Nicolas Sapay and Gilbert Deléage, at IBCP, in Lyon, on the prediction of
amphipathic in-plane membrane anchors in motopic proteins, has given birth to a new prediction method,
«AmphipaSeek» [29], which is available from the website of the PBIL, at the following address : http://npsa-
pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_amphipaseek.html.

6.7. Modeling the FAK protein (ATIPE)
Keywords: clustering, homology modeling, protein structures.

Participants: Ernst Althaus, Stefan Canzar.

Imposing a classification on an otherwise unordered protein fold space aids our understanding of protein
evolution and the relationship between three-dimensional structure and function. We describe a similarity
model that provides the objective basis for clustering proteins of similar structure. More specifically, we
consider the following variant of the protein-protein similarity problem: We want to find proteins in a
large database pdbase that are very similar to a given query protein in terms of geometric shape. We give
experimental evidence, that the shape similarity model of Osada, Funkhouser, Chazelle and Dobkin can be
transferred to the context of protein structure comparison. This model is very simple and leads to algorithms
that have attractive space requirements and running times. For example, it took 0.39 second to retrieve the

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_amphipaseek.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_amphipaseek.html
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eight members of the seryl family out of 26,600 domains. Furthermore, a very high agreement with one of
the most popular classification schemes proved the significance of our simplified representation of complex
proteins structure by a distribution of Cα-Cα distances.

6.8. Multiple sequence alignment (ATIPE)
Keywords: cutting planes, integer programming, multiple sequence alignment.

Participants: Ernst Althaus, Stefan Canzar.

In [14], we propose a cutting plane approach for the alignment of multiple sequences, which is a central
problem in computational biology, considering the general case in which (arbitrary) gap costs, besides the
customary alignment costs, are specified. An interesting and unusual aspect of our approach is that the three
(exponentially large) classes of natural valid inequalities that we considered since the beginning of our study
turn out to be both facet defining for the convex hull of the integer solutions and separable in polynomial
time. Both the facet defining proofs and the separation algorithms are far from trivial. Experimental results on
instances from the BAliBase library of reference alignments show that our method outperforms the best tools
developed so far, in that it produces alignments which are better from a biological point of view.

At the moment, we are working in improving the computational efficiency of your approach. The bottleneck
of our implementation is the solution of the (exponentially large) linear relaxation of our integer program. We
try to develop methods to approximate the value of the linear program efficiently.

6.9. Computing Steiner minimum trees in Hamming metric (ATIPE)
Keywords: Steiner minimum trees.

Participant: Ernst Althaus.

In [22] we consider the problem of computing a Steiner minimum tree in Hamming metric. Given a set
T ⊆ U of required points (terminals) in an universe U and a cost function c : U × U 7→ R, a Steiner tree is a
tree connecting T ∪S for a subset S ⊆ U . A Steiner minimum tree SMT(T ), is a Steiner tree of minimal cost.

The Steiner tree problem is one of the most studied NP-hard optimization problems (probably second after
the Traveling Salesman problem). Here we are interested in the variant where U is the set of strings of a certain
length d and c is the Hamming distance between two strings.

The main application of this variant of the Steiner tree problem is to compute evolutionary trees in
bioinformatics and computational linguistics.

Among all methods for finding such trees, algorithms using variations of a branch and bound method
developed by Penny and Hendy have been the fastest for more than 20 years. We describe a new pruning
approach that is far superior to previous methods and outline its implementation.

6.10. Approximating k-hop minimum spanning trees (ATIPE)
Keywords: minimum spanning tree.

Participant: Ernst Althaus.

In [15], we consider the problem of computing minimum-cost spanning trees with depth restrictions.
Specifically, we are given an n-node complete graph G, a metric cost-function c on its edges, and an integer
k ≥ 1. The goal in the minimum-cost k-hop spanning tree (kHMST) is to compute a spanning tree T in G of
minimum total cost such that the longest root-leaf-path in the tree has at most k edges.

Our main result is an algorithm that computes a tree of depth at most k and total expected cost O(log n)
times that of a minimum-cost k-hop spanning-tree. The result is based upon earlier work on metric space
approximation due to Fakcharoenphol et al, and Bartal. In particular, we show that the kHMST problem can
be solved exactly in polynomial time when the cost metric c is induced by a so called hierarchically well-
separated tree.
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7. Other Grants and Activities
7.1. Regional projects

We participate in the «Génopole Strasbourg Alsace-Lorraine» together with the laboratory MAEM («Mat-
uration des ARN et Enzymologie Moléculaire»), UMR 7567, in Nancy and the IGBMC in Strasbourg.

In the framework of the CPER Lorraine 2000-2006, we participate in the project «Bioinformatics and
Applications to Genomics» of the PRST «Intelligence Logicielle». Our partners here are the Laboratory of
Crystallography LCM3B (UMR 7036), the «équipe de Dynamique des Assemblages Membranaires» (eDAM,
UMR 7565) and the MAEM (UMR 7567) at the University Henri Poincaré, Nancy 1.

7.2. National projects
Since February 2002, we have been participating in the cooperative research action ARC CPBIO «Process

calculi and Biology of Molecular Networks». Our partners are the project team CONTRAINTES from INRIA
Rocquencourt (F. Fages), the Genoscope (V. Schächter) and the laboratory PPS (V. Danos) in Paris.

We have regular contacts with the INRIA project teams HELIX (Rhône-Alpes), SYMBIOSE (Rennes)
and COMORE (Sophia-Antipolis). In particular, we have been collaborating with Hidde de Jong (HELIX) in
modeling the regulation of alternative splicing.

Since September 2003, we are coordinating a project called GENOTO3D, which is funded by the «Action
Concertée Incitative» (ACI) «Masses de Données». The aim of this project is to apply machine learning
approaches to the prediction of the tertiary structure of globular proteins. Our partners are the IBCP in Lyon,
the LIF in Marseille, the project team SYMBIOSE from IRISA, the LIRMM in Montpellier, and the MIG
laboratory of INRA in Jouy-en-Josas.

7.3. International relations
Within the French-Russian Institute Liapunov, we have a joint project with the Institute for Mathematical

Problems in Biology (IMPB) of the Russian Academy of Sciences in Pushchino (V. Y. Lunin).
We have been collaborating with researchers from Carnegie-Mellon University (E. Balas, John N. Hooker),

the Center of Operations Research CORE in Louvain-la-Neuve (L. Wolsey), the Max Planck Institute for
Computer Science in Saarbrücken (working groups of K. Mehlhorn and F. Eisenbrand), SAP AG (T. Kasper),
the University of California at Irvine (P. Baldi), IBM at Zurich (A. Elisseeff), and the Wiener laboratories in
Rosario (D. Zelus).

8. Dissemination
8.1. Serving the scientific community

François Denis has been the program commitee chair of CAP05, the french national conference on Machine
Learning, which was held in Nice on June 1-3, 2005.

Yann Guermeur has been a member of the program committee of CAP’05.

8.2. Teaching
Ernst Althaus has taught the following lectures (unless otherwise indicated, all teaching has been done at

the Universität der Saarlandes, Saarbrücken, Germany):

• Datastructures and Algorithms, October 2004 - February 2005 (together with Dr. Ulrich Meyer)

• Part of the course Pépites Algorithmiques, March 2005 at the École des Mines, Nancy, France

• Lecture Optimization, April 2005 - July 2005 (together with Dr. Benjamin Dörr)
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• Lecture Datenstrukturen und effiziente Algorithmen, October 2005 - March 2006 at the Johannes-
Gutenberg Universität, Mainz, Germany

• Seminar Online-Algorithmen, October 2005 - March 2006 at the Johannes-Gutenberg Universität,
Mainz, Germany (together with Elmar Schömer and Marcel Marquardt)

• Lecture Bioinformatik, October 2005 - March 2006 at the Johannes-Gutenberg Universität, Mainz,
Germany (together with several lectures from the department of biology)

Yann Guermeur has been teaching bioinformatics at a Master of the INPL and the M2P speciality
"Génomique et Informatique" of the Master "Sciences de la Vie et de la Santé" (SVS), at the UHP.

8.3. Miscellaneous
Frédéric Sur has been a member of the board of the "Banque PT" entrance examination in mathematics

("Grandes Écoles" entrance examination).
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